## Boundary Element Method Open Source Software in Matlab/ Octave/Freemat/Scilab

| File / Module(s)  | interiorSquareTestRobin.m/interiorSquareTestRobin.m                                                                                                            |          |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Title             | Practical test of the gls.m and regls.m routines for solving a general linear system of equations in the context of the dire                                   | ct       |
|                   | boundary element method.                                                                                                                                       |          |
| Version(Date) and | <b>1.</b> (July 2015).                                                                                                                                         |          |
| History           |                                                                                                                                                                |          |
| Description       | This is a Matlab /Octave/Freemat/Scilab code for testing the gls.m routine for solving the linear system                                                       |          |
|                   |                                                                                                                                                                |          |
|                   | $A\underline{x} = B\underline{y} + \underline{c},$                                                                                                             | (1a)     |
|                   |                                                                                                                                                                |          |
|                   | where A and B are known $n \times n$ matrices and <u>c</u> is a known <i>n</i> -vector with                                                                    |          |
|                   |                                                                                                                                                                |          |
|                   | $\alpha_i x_i + \beta_i y_i = f_i \text{ for } i = 1 \dots n $                                                                                                 | (1b)     |
|                   |                                                                                                                                                                |          |
|                   | where the $\alpha_i, \beta_i$ and $f_i$ are constants with $\alpha_i$ and $\beta_i$ are never both zero for each 1.                                            |          |
|                   | The outline test problem                                                                                                                                       |          |
|                   |                                                                                                                                                                |          |
|                   | n_D=2;                                                                                                                                                         |          |
|                   | p_D=[ 0.25, 0.75; 0.75, 0.25];.                                                                                                                                |          |
|                   |                                                                                                                                                                |          |
|                   | The matrices $L_{SS}$ , $M_{SS}$ and $M_{SS}^{L}$ are generally required for the implementation of the method in order to find the su                          | rface    |
|                   | solutions and the following command generates these matrices:                                                                                                  |          |
|                   | [L_SS,M_SS,Mt_SS,N_SS] = IDem2_on(n_S,vertpts,elemvert,true,true,true,true,taise); .                                                                           |          |
|                   | In the command above the 'on' in 'lbem? on' indicates that the points are on the surface. The 'true true true true true                                        | alse'    |
|                   | indicates that the $L_{ac}$ $M_{ac}$ and $M_{ac}^{t}$ are required but the final matrix is not required. Following this command the matrix                     | icses    |
|                   | are stored in L SSM SS and Mt SS Similarly for the domain points in the methods above only the L <sub>pc</sub> and                                             | Mpc      |
|                   | matrices are required, and these values are stored in L DS and M DS following the command:                                                                     | I III DS |
|                   |                                                                                                                                                                |          |
|                   | [L_DS,M_DS,Mt_DS,N_DS]=lbem2(n_D,p_D,vecp_D,n_S,vertpts,elemvert,false,true,true,false,false);                                                                 |          |
|                   | Since the M <sub>es</sub> and M <sup>t</sup> <sub>c</sub> matrices are always used with $\frac{1}{2}$ Ladded, it is convenient to form the following matrices: |          |
|                   | 2                                                                                                                                                              |          |

```
M_SSplus=M_SS+eye(n_S)/2;
Mt_SSplus=Mt_SS+eye(n_S)/2;
The exact solutions on the boundary for the test problem have been stated and are illustrated on Figure 1. In the Matlab
code they are set as follows:
for k=1:n S
       phi_S_exact(k)=2*(colpoints(k,1)^2-colpoints(k,2)^2);
end
for k=1:n S/4
       v S exact(k)=0;
       v S exact(n S/4+k)=-4;
       v_S_exact(n_S/2+k)=4;
       v_S_exact(3*n_S/4+k)=0;
end
Test 1: Half Dirichlet and half Neumann boundary condition.
As a first test the direct method involving the gls algorithm is compared with the alternative methods. In this case the direct
boundary element method is still easily applicable in the usual, if rather clumsy fashion. In this test the Dirichlet boundary
condition is applied on the left and top sides and the Nemann condition is applied on the right and bottom sides. In matlab
this is coded as follows:
alpha(1:n S/2)=1.0;
alpha(n_S/2+1:n_S)=0.0;
beta(1:n S/2)=0.0;
beta(n S/2+1:n S)=1.0;
for (k=1:n S)
       f(k)=alpha(k)*phi S exact(k)+beta(k)*v S exact(k);
end
Direct Methods
In the direct method, with variation in the method of solving the system of equations, the purpuse of the first part of the
method is to find vectors \hat{\varphi}_S and \hat{v}_S by solving equation (9). Once these have been determined, \hat{\varphi}_D can be found using
equation (11) and in matlab this is implemented with the following code:
phi D=L DS*v S-M DS*phi S.
```



|                                                                                                                                                                                      | The various                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s direct solutions ae           | carried out to illustrate th  | e various matrix solution   | techniques. They also verify the <i>gls</i> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------|-----------------------------|---------------------------------------------|
|                                                                                                                                                                                      | algorithm that is the subject of this paper. The three methods solving the system arising in the direct all give the same                                                                                                                                                                                                                                                                                                                                                                                |                                 |                               |                             |                                             |
|                                                                                                                                                                                      | solutions ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nd these are shown in           | Table 1. The solutions usin   | g the indirect method are g | given in Table 2.                           |
|                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                               |                             |                                             |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test problem 1: Direct Solution |                               |                             |                                             |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | elements                        | point (0.25,0.75)             | point (0.75, 0.25)          |                                             |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | exact solution                  | -1                            | 1                           |                                             |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32                              | -1.00116340579288             | 0.99140414916650            |                                             |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64                              | -1.00032267851548             | 0.99749398360249            |                                             |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 128                             | -1.00009049851497             | 0.99926478494698            |                                             |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 256                             | -1.00002558523010             | 0.99978267595968            |                                             |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 512                             | -1.00000729360382             | 0.99993525789670            |                                             |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1024                            | -1.00000209812315             | 0.99998056513669            |                                             |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tal                             | ble 1. The results from the c | lirect solution on Test pro | blem 1.                                     |
|                                                                                                                                                                                      | Г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Τe                              | est problem 1: Indirect Sol   | ution                       |                                             |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | elements                        | point (0.25,0.75)             | point (0.75, 0.25)          |                                             |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | exact solution                  | -1                            | 1                           |                                             |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32                              | -1.00723281386399             | 0.93455909390238            |                                             |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64                              | -1.00406088516754             | 0.95961702269782            |                                             |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 128                             | -1.00246190337801             | 0.97476365754309            |                                             |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 256                             | -1.00153247427505             | 0.98415050828163            |                                             |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 512                             | -1.00096190256784             | 0.99002659494003            |                                             |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1024                            | -1.00060530545130             | 0.99371954438783            |                                             |
| Table 2. The results from the indirect solution on Test problem 1.<br><u>Test 2: <math>\alpha(\mathbf{p})</math> and <math>\beta(\mathbf{p})</math> are both generally non-zero.</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                               |                             |                                             |
|                                                                                                                                                                                      | The second test is based on the same solution as Test 1, but the boundary condition is such that $\alpha(\mathbf{p})$ and $\beta(\mathbf{p})$ are finite over the boundary. In order to activate the gls method fully, the $\alpha(\mathbf{p})$ and $\beta(\mathbf{p})$ are set over a wide range of values, $\alpha(\mathbf{p})$ from small (almost zero) to large (10 <sup>6</sup> ) and $\beta(\mathbf{p})$ similarly from large to small. The code for setting the boundary condition is as follows: |                                 |                               |                             |                                             |

| for k=1:n_S<br>alpha(k)=10^(6*k/n_<br>beta(k)=10^(6*(n_S-<br>f(k)=alpha(k)*phi_S_<br>end .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S);<br>k)/n_S);<br>_exact(k)+beta(k)*v_S_exact                          | (k);                                                                |                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|
| If the boundary condition is the boundary co | truly mixed, that is $\alpha(\mathbf{p})$ and                           | $\beta(\mathbf{p})$ are generally non-ze                            | ero, then the row swapping method (as             |
| in lest 1, <i>Direct Method 1</i> ) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cannot be used. The method is the als method is                         | based on the compound m                                             | hatrix (as in Test 1, <i>Direct Method 2</i> ) is |
| same way as in Test1 The re-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sults from these tests are give                                         | n Tables 3 and 4                                                    | muneet method is also applied in the              |
| same way as in restr. The re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | suits if officiencies costs are give                                    |                                                                     |                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test problem 2: Direct So                                               | lution                                                              |                                                   |
| elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | point (0.25,0.75)                                                       | point (0.75, 0.25)                                                  |                                                   |
| exact solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1                                                                      | 1                                                                   |                                                   |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.99313784783564                                                       | 1.00082851722167                                                    |                                                   |
| 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.99803407600987                                                       | 1.00022336648713                                                    |                                                   |
| 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.99941881322429                                                       | 1.00006375224490                                                    |                                                   |
| 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.99982435277907                                                       | 1.00001885053645                                                    |                                                   |
| 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.99994612588802                                                       | 1.00000570093421                                                    |                                                   |
| 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.99998331140774                                                       | 1.00000174981983                                                    |                                                   |
| elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Table 3. The results from the<br>Test problem 2: Indirect S             | e direct solution on Test pr<br>olution                             | roblem 2.                                         |
| exact solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1                                                                      | 1                                                                   | _                                                 |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.93310167620744                                                       | 1.00787906346035                                                    |                                                   |
| 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.95833487012629                                                       | 1.00457866374391                                                    | -                                                 |
| 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.97382320310768                                                       | 1.00282928391449                                                    |                                                   |
| 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.98351131440556                                                       | 1.00177838256915                                                    | 7                                                 |
| 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.98960793716359                                                       | 1.00112171388078                                                    | 7                                                 |
| 1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.99345041461506                                                       | 1.00070760841826                                                    |                                                   |
| 512<br>1024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.98960793716359<br>-0.99345041461506<br>Table 4. The results from the | 1.00112171388078<br>1.00070760841826<br>indirect solution on Test p | problem 4.                                        |

| Interface                 | function [phi_D,phi_S,v_S]= interiorSquareTestRobin(n_S)                                                                    |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                           |                                                                                                                             |
|                           | Input Parameters<br>integer p.S. The number of alements on the square, must be a multiple of A                              |
|                           | integer in_5 The number of elements on the square, mast be a mailiple of 4.                                                 |
|                           | <u>Output Parameters</u>                                                                                                    |
|                           | phi_D The computed solution $\varphi$ at the interior points (0.25,0.75) and (0.75,0.25)                                    |
|                           | phi_S The computed solution $\varphi$ at the collocation points, the centres of the elements                                |
|                           | v_S The computed solution $\frac{\partial \varphi}{\partial r}$ at the collocation points, the centres of the elements      |
|                           | on                                                                                                                          |
| Web source of code.       | www.boundary-element-method.com/mfiles/interiorSquareTestRobin.m                                                            |
| Web source of this guide  | www.boundary-element-method.com/mfiles / interiorSquareTestRobin _m.pdf                                                     |
| Web source of the         | www.boundary-element-method.com/tutorials/Integral Equation Formulations of the Interior Laplace Problem.pdf                |
| algorithm                 |                                                                                                                             |
| Dependent routines        | lbem2.m <u>http://www.boundary-element-method.com/mfiles/lbem2.m</u>                                                        |
|                           | lbem2_on.m <u>http://www.boundary-element-method.com/mfiles/lbem2_on.m</u>                                                  |
|                           | gls.m <u>http://www.boundary-element-method.com/mfiles/gls.m</u>                                                            |
|                           | regls.m <u>http://www.boundary-element-method.com/mfiles/regls.m</u>                                                        |
|                           | square_general.m <u>http://www.boundary-element-method.com/mfiles/square_general.m</u>                                      |
| Test problems or          | gls.m <u>http://www.boundary-element-method.com/mfiles/gls.m</u>                                                            |
| modules tested            | regls.m <u>http://www.boundary-element-method.com/mfiles/regls.m</u>                                                        |
|                           | lbem2.m <u>http://www.boundary-element-method.com/mfiles/lbem2.m</u>                                                        |
|                           | lbem2_on.m <u>http://www.boundary-element-method.com/mfiles/lbem2_on.m</u>                                                  |
| Licence                   | This is 'open source'; the software may be used and applied within other systems as long as its provenance is appropriately |
|                           | acknowledged. See the <u>GNU Licence</u> for more information or contact <u>webmaster@boundary-element-method.com</u> .     |
| Codes that this may be    | gls.m will normally be run before regls: <u>http://www.boundary-element-method.com/mfiles/gls.m</u>                         |
| used alongside this one   |                                                                                                                             |
| Similar codes that may be | A similar m-file code is available in Excel-VBA on                                                                          |
| of interest               | www.boundary-element-method.com/Excel_VBA/GLS.xlsm                                                                          |
|                           | and a similar code is available in Fortran on                                                                               |
|                           | http://www.boundary-element-method.com/fortran/REGLS.FOR                                                                    |
| Applications              |                                                                                                                             |

| Author     | Stephen Kirkup                                                      |
|------------|---------------------------------------------------------------------|
| References | 1. <u>Numerical Solution of General Linear Systems of Equations</u> |
|            | 2. <u>The Boundary Element Method in Acoustics</u>                  |
|            | 3. <u>www.boundary-element-method.com</u>                           |
|            | 4. <u>www.freemat.info</u>                                          |